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The first article in this series1 outlined the rationale for model-
based drug development (MBDD) and introduced six key com-
ponents (pharmacokinetics–pharmacodynamics (PK–PD) and 
disease models, competitor information and meta-analysis, 
design and trial execution models, data analysis models, quan-
titative decision criteria, and trial performance metrics) of a 
“quantitative toolkit.” Examples were used to illustrate their 
application across a range of drug-development contexts. This 
article examines and illustrates the continued evolution of 
MBDD since the earlier publication, with particular emphasis 
on the requirements to implement and maintain application 
of this concept within a large multinational pharmaceutical 
research and development organization.

The evolution of MBDD is depicted in Figure 1. Going beyond 
solely development-related activities, it also now encompasses 
(earlier) discovery and (later) real-world clinical utilization set-
tings. Figure 1 has many familiar elements, such as visualizing 
the entire drug discovery and development process through 
to commercialization and beyond as a series of “left to right” 
events/stages. However, we also emphasize the need for both the 

feed-forward and feed-back of information across all these stages. 
This requires a much greater degree of both data and (inferential) 
knowledge integration than is currently the norm. This require-
ment represents a significant technical challenge given the com-
plexity of the drug discovery and development process. The linear 
nature of the current process creates an opportunity for the variety 
of quantitative approaches encompassed in Figure 1 to acceler-
ate drug development. This opportunity will be realized through 
not treating the overall process as a series of discrete events that 
occur in a sequential manner in which successful completion of a 
particular stage enables compound continuation to the adjoining 
stage. MBDD offers the potential to treat the overall process as a 
continuum of integrated and interrelated events that occur in an 
order that can be adjusted in light of the most complete apprecia-
tion of a compound’s inherent risks informed by the capacity of 
the accumulated data and (inferential) knowledge integration to 
mitigate and manage these risks.

In Figure 1, there are not only (horizontal) “left to right” 
elements to consider but also a series of (vertical) “top to bot-
tom” elements, which are important. We regard each of these 
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components as foundational elements that are instrumental in 
determining the likelihood of a given compound ever being pre-
scribed to patients. The traditional paradigm described previously 
(historical enabling of activities rather than informing of future 
activities) often results in a situation in which emerging weakness 
in earlier foundational elements (rationale) forces organizations 
into the very difficult situation of having to adopt later “shoring 
up” activities, which come at great cost with often little return in 
terms of increasing the compounds’ probability of success. This 
challenging cycle of events has impacted the level of productivity 
of the industry as a whole. Once again, we see an opportunity for 
the variety of quantitative approaches encompassed in Figure 1 to 
accelerate drug development. We can continuously examine each 
single and combined confidence in rationale (selected pathway, 
target, molecule, dose regimen, patients) in light of emerging data, 
both internal and external, and therefore more reliably inform our 
subsequent go/no go decisions.

MBDD IMPLEMENTATION PERSPECTIVES
Our organization embarked on an enterprise-wide adoption of 
MBDD concepts in 2005 in light of what was considered to be 
an unsustainable (albeit industry average) late-stage study failure 
rate, with failure being defined as the inability of the emerg-
ing study efficacy data to correspond to the study’s a priori effi-
cacy hypothesis. We examined the causes of such failures in 68 
historical phase II/III/IV clinical trials and found a number of 
recurring themes, which were considered to be “root causes” 
and necessitate improvement:

1.	 Insufficient characterization of the exposure–response 
relationship before implementing confirmatory studies in 
late-stage clinical development;

2.	 Insufficient knowledge of the treatment effect in the target 
population (difference from placebo or active comparator 
and/or variance);

3.	 Incomplete knowledge of the drug, mechanistically related 
drugs, and attributes of the therapeutic indication of inter-
est because relevant data were not systematically collated, 
stored, and utilized;

4.	 Lack of team experience with the primary end point (often 
due to “enhancements” of the historically established end 
point).

These findings demonstrated both technical and behavioral/
cultural inadequacies. Consequently, attempts to reverse this situ-
ation had to rectify both of these dimensions in a staged manner. 
We were aware, through observing the range of organizational 
structures and functions in existence at that time, that organiza-
tional constructs could significantly limit or enhance adoption 
of any corrective approaches. This organizational heterogeneity 
existed despite a high degree of concordance across many phar-
maceutical companies in their stated desire to increase both the 
utilization and influence of MBDD approaches.

We initially observed that the expertise required to deliver 
the technical components of MBDD resided within discrete 
and dislocated groupings; longitudinal MBDD within clinical 
pharmacology/pharmacometrics, study design within statistics, 
and program strategy and design within the therapeutic area 
clinicians. A second observation was that none of the techni-
cal components of MBDD envisioned at that time were in fact 
truly innovative. We were facing a situation in which the desired 
methodologies were established, and we had some colleagues 
with the skills to implement them, but we had an organiza-
tion that did not fully capitalize on the available opportunity. 
Therefore, to shift the dynamic from relying solely on the more 
technically able colleagues who existed across the key disci-
plines (clinicians, statisticians, and clinical pharmacologists/
pharmacometricians) driving organizational implementation 
in a disaggregated “bottom–up” manner, we sought and received 
considerable and active senior-level sponsorship before and 
during implementation in a “top–down” manner. This senior-
level support was manifested in a number of ways, including 
repeated and unambiguous public statements both internally 
and externally on the importance of MBDD; incorporation of 
MBDD into organizational and individual goals; and the align-
ment of governance committees, technical review committees, 
and drug-development teams on their specific responsibilities 
to “institutionalize” MBDD within the organization.

Figure 1  The evolution of model-based drug development (MBDD). Adapted from ref. 2.
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Two types of educational offerings were developed and deliv-
ered. First, colleagues within each discipline were trained on 
what was expected of them from a technical perspective and 
what they needed to understand of the other two disciplines in 
order to be able to interact effectively. Second, the three disci-
plines were brought together to participate in a series of case-
based workshops with the emphasis on working together to 
(overtly) solve drug-development problems synergistically and 
to (covertly) exemplify the benefits of improved team behaviors. 
Over a 6-month period, 90% of eligible colleagues across all 
countries where clinical development activities occurred com-
pleted the required training.

Participants were trained to recognize that as the types of 
development questions differed, the strategies and study designs 
suited to address these questions should also differ. The technical 
aspects of our training program followed the learning/confirm-
ing cycle concept introduced by Lewis Sheiner in 1997.3 Earlier 
studies were designed to maximize learning opportunities. The 
resulting optimized study data, positioned within the relevant 
compound landscape, informed the subsequent strategy deci-
sions. It was demonstrated that learning study designs used 
analysis methods that would not necessarily be the best choice 
for confirmatory studies. For example, teams could use models 
based on reasonable assumptions that emanated from the broad-
est knowledge base instead of using the minimal assumption 
analyses typically required for key regulatory decisions.

Participants were also trained to recognize that MBDD could 
and should be used in the design phase to help assess design 
properties, beyond typical sample size methods that focus on 
false-positive and false-negative rates. It was important for the 
participants to understand the operating characteristics of a 
design (e.g., probability of making a correct decision, preci-
sion of estimates, size or cost of the study, feasibility of accrual, 
and time to achieve an answer) under various assumptions and 
the ability of a particular study to meet the objectives of the 
program. These operating characteristics could be determined 
using direct computation with assumed underlying probability 
distributions (typical for standard power/sample size estimates 
but also available for other characteristics) or be simulation 
based following the generation of data intended to mimic the 
proposed trial and analysis. These data could be generated based 
on hypothetical population characteristics or using observed 
data from other sources (or some combination). A range of 
designs is available for consideration, and over the years fol-
lowing MBDD implementation we have seen an increase in the 
adoption of various flexible/adaptive designs such as the clas-
sic group sequential approach that includes early termination 
for success or futility, and the more innovative adaptive designs 
that include termination of some dose groups based on interim 
efficacy or safety results or alteration of the randomization ratios 
to increase precision in the determination of an effective dose 
range.

What was continuously emphasized throughout the training 
was that MBDD was not solely about applying these designs; 
instead, it encouraged teams to consider design options within 
a “fit for purpose” context. For example, if the intent was to 

understand and characterize a dose– or exposure–response 
relationship, then a study should be designed to optimize 
the amount of information required to meet that objective. 
Previously in phase II, confirmatory-type designs, in which 
each dose was compared with placebo (or comparator), were 
conducted, based on the argument that these studies (if suc-
cessful) may qualify as one of the confirmatory studies required 
for regulatory approval. However, given the modest success 
rate of such studies in our historical analysis and the limited 
learning derived from these designs, this is not an efficient 
strategy. We showed that a study designed to enable estima-
tion of an exposure–response relationship (given a particular 
structural form) could be much smaller, yet yield much more 
(precise) information, thereby facilitating dose selection deci-
sions. We also showed that the resultant information would be 
extremely important in supporting the ultimate approval of 
the compound because the exposure–response relationship 
had been characterized in a “well-controlled” study and sub-
sequently informed the proposed dose(s) justification. Later, 
phase III confirmatory study designs could then be informed 
using a more comprehensive efficacy “evidence base” that 
maximizes the probability of success for both the studies and 
the compound. In our experience, this particular change (from 
hypothesis testing toward estimation approaches as the pri-
mary data analytic) was the single largest factor in reducing 
our overall clinical trial budget. Table 1 illustrates the nature 
and extent of the efficiencies gained through application of 
MBDD across a range of indications.

In the years following MBDD implementation, our organiza-
tion experienced an improvement in late-stage clinical devel-
opment productivity (Figure 2). Of greatest importance was 
the incremental gain in the proportion of successful phase III 
and IV trials. We attribute this success to a number of factors, 
including study teams developing comprehensive knowledge 
management strategies that enabled a more accurate quantifica-
tion of the probability of achieving the required product profile 
(which was regularly updated as data accumulated throughout 
compound development). This approach enabled more robust 
decision making because study teams avoided performing stud-
ies that had an unacceptable probability of failing. As a conse-
quence, more compounds were terminated earlier in phase II; 
however, it should be recognized that the cost of many of these 
failures was considerably reduced through early termination 
for futility. Earlier termination also means that resources could 
be reallocated to other compounds in development that have a 
greater probability of success.

The proportion of successful phase II trials was relatively 
static year on year. There is potentially a complex dynamic 
in existence in phase II; on the one hand, there are factors 
that increase the phase II study failure rate (unacceptable 
probability of success in phase III); and on the other, there is 
the potential for some of the approaches shown in Table 1 to 
minimize and mitigate phase II failure rates. The interaction 
of these various complexities could account for the results 
shown in Figure 2 and although achieving phase II stasis is a 
“good” result, we envision significant challenges to increase 
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the proportion of successful phase II trials, which are dis-
cussed later in this article.

As mentioned previously, efficiency gains could be achieved 
via the nature/attributes of the actual studies performed and 
the risk/cost mitigation strategy for the program as a whole. 
In the first year of implementation, we closely tracked the 
cost efficiencies gained through designing MBDD “informed” 
studies over our historical norms for the specific indica-
tion, and we were able to document returns of just under 
$70 million. Following 2 years of implementation, once 
MBDD principles were firmly established within the organi-
zation, $100 million was taken out of the global clinical trial 
budget, year on year. This encouraged teams to use their 
enhanced technical and behavioral attributes to “do the same 
for less” or in some instances “do more for less.” This has been 
achieved through what has largely become the organizational 
norm: to quantitatively articulate protocol and program risks 

with a range of buy-up/buy-down options enumerated for dis-
cussion and selection.

The examples that follow illustrate the evolution of MBDD 
application over the past few years within our organization.

Application of integrated pharmacometrics and systems 
pharmacology models to guide decision criteria and clinical 
study designs for early clinical development
Endometriosis is a gynecological condition that affects up to 
15% of women of reproductive age and that results from the 
presence of endometrial-like tissue outside of the uterine cav-
ity and requires estrogen for proliferation.4 The major clinical 
symptoms are dysmenorrhea (pain during menses), pelvic pain 
with lower-back or abdominal pain, dyspareunia (pain during 
sex), and dysuria (urinary urgency, frequency, and painful 
voiding). Treatments that are effective at reducing endome-
triosis-related pain include the use of gonadotropin-releasing 

Figure 2  Phase II, III, and IV study outcomes (% positive or negative for the primary efficacy outcome) following MBDD implementation. The year refers to when 
each specific study was initiated. The number in parenthesis provides the actual number of studies to subsequently complete and form the basis of the reported 
percentages. MBDD, model-based drug development.
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Table 1  Some examples of the high-level efficiencies gained over historical designs and data analytics following MBDD 
implementation

Indication MBDD approach adopted
Efficiencies gained over historical designs and 
analysis

Thromboembolisma Omit phase IIa, model-based dose–response relationship, 
adaptive phase IIb design

2,750 Fewer patients, 1 year shorter study duration

Hot flashes Model-based dose–response relationship 1,000 Fewer patients

Fibromyalgia Prior data supplementation, model-based dose–response 
relationship, sequential design

760 Fewer patients, 1 year shorter study duration

Type 2 diabetes Prior data supplementation, model-based dose–response 
relationship

120 Fewer patients, 1 year shorter study duration

Gastroesophageal reflux Model-based dose–response relationship 1,025 Fewer patients

Rheumatoid arthritis Model-based dose–response relationship 437 Fewer patients, increased probability of success

Global anxiety disorder Omit phase IIb 260 Fewer patients, 1 year shorter study duration

Lower urinary tract symptoms Meta-analysis Increased probability of success

Urinary incontinence Meta-analysis Increased probability of success

MBDD, model-based drug development.
aThis application is discussed further in the text as example 4, “Adaptive dose-finding phase II study designed using clinical trial simulations.”
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hormone (GnRH) analogs.5 However, these compounds cause 
profound decreases in estrogen and as a result, patients often 
have menopause-like side effects such as hot flashes and reduc-
tion in bone mineral density (BMD). Although GnRH analogs 
provide very effective pain treatment, the side effects limit their 
use to 6 months. Low-dose estrogen–progestin hormone therapy 
has been used to prevent bone loss when prolonged treatment 
is needed.6–9 We had identified a number of potential targets in 
the GnRH pathway as treatments for endometriosis. An 8-week 
proof-of-concept (POC) study for endometriosis was being con-
sidered, but it would not be long enough to observe the key 
safety issue of BMD loss.

A number of key clinical development questions were there-
fore identified, which include the following:

1.	 What is the optimal range of estrogen levels?
2.	 Can modulation of the GnRH pathway achieve ideal estro-

gen levels?
3.	 Which biomarkers (e.g., estrogen and bone markers), if 

any, would provide reliable predictions of long-term BMD 
changes?

4.	 Can an optimal biomarker range be identified?
5.	 What is the expected biomarker time course?

Due to the highly nonlinear nature and multiple feedback 
loops in the female menstrual cycle and bone metabolism, an 
integrated pharmacometrics and systems pharmacology model-
based approach was undertaken to address these questions.10

A standard pharmacometrics approach was used to deter-
mine the relationship between estrogen (estradiol; E2) levels 
and endometrium symptoms index score (ESSS). Internal 
patient-level (n = 499) data (E2 and ESSS measurements, n = 
1,354) were obtained from three clinical studies with nafare-
line, a marketed GnRH agonist.11–13 A logistic regression model 
was developed for ESSS in which a cumulative logit function, 
including E2 levels for each patient and visit and incorporating 
interindividual variance, determines probabilities for each ESSS 
score from 0 to 3 or ≥4. The logistic regression results charac-
terized the E2–ESSS relationship in which the probability of a 
patient experiencing a less severe score decreased as E2 levels 
increased (Figure 3).

The relationship among bone markers, lumbar spine BMD, 
and E2 was determined by extension of an existing multiscale 
model of calcium and bone homeostasis.13 To predict longi-
tudinal effects of E2 suppression on lumbar BMD, data were 
extracted from 14 double-blind studies reporting lumbar spine 
BMD and E2 following treatment (>6 months) with GnRH ago-
nists or antagonists for endometriosis. The effects of estrogen 
on several model components, including transforming growth 
factor-β, osteoblasts, active osteoclasts, tubular reabsorption, 
and renal excretion of calcium, were simultaneously fitted to the 
clinical data. The extended multiscale model was then used to 
predict the effects of GnRH-related alterations on the bone for-
mation marker, bone-specific alkaline phosphatase, and the deg-
radation markers, N-telopeptide or C-telopeptide. The effect of 
GnRH modulation was modeled through reductions in E2 levels 

ranging from 90 to 60%. The estimate of lumbar spine BMD 
changes was modeled via changes in osteoblast (bone-specific 
alkaline phosphatase) and osteoclast (C-telopeptide) function. 
The time course of bone biomarker changes helped identify 
which, if any, of the commonly available bone biomarkers would 
offer an early, sensitive measure of long-term BMD changes 
as well as define the target range for the biomarker response. 
These models indicated that marked reductions in estrogen lev-
els (80%) were predicted to cause minor changes in biomarker 
levels (<25%) and very minor changes in BMD (<1%) during 
the first 3 months following treatment. Six months of continuous 
suppression of estrogen (80%) was predicted to cause a 2% BMD 
loss, which is twice the rate following menopause.

An acceptable BMD loss of ≤1% could be achieved with 
~60% suppression of estrogen levels and was accompanied by 
minimal bone marker changes (<10%). Therefore, in the dose 
range of interest (60–80% inhibition of estrogen), biomarkers 
of bone turnover are unlikely to be able to adequately differ-
entiate between doses. By contrast, estrogen level appeared to 
be the most sensitive biomarker for both efficacy and safety. 
Maximal suppression of estrogen was predicted to occur within 
1–2 months of treatment and therefore is a rapid and sensitive 
biomarker of treatment effect. A target range of estrogen levels 
of 20–40 pg/ml was identified to provide a clinically meaning-
ful improvement on ESSS pain score, with limited effects on 
6-month BMD (<2% change; Figure 3). In addition to the mul-
tiscale systems pharmacology model of calcium homeostasis, a 
systems pharmacology model of the female menstrual cycle was 
developed to assess the feasibility of achieving the desired tar-
get range of estrogen suppression via modulation of the GnRH 
pathway, as well as supporting early clinical development pro-
grams.14 This model highlighted the difficulties in being able 
to target a narrow range of estrogen levels in a diverse patient 
population.

Figure 3  Comparison of predicted endometrial symptoms severity score 
(ESSS) probabilities and lumbar spine bone mineral density (BMD) change 
as a function of serum estradiol (E2). ESSS model predictions represent the 
median probabilities from the ordered categorical logistic regression model; 
BMD predictions were taken from the deterministic multiscale systems 
pharmacology model.
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In summary, this work identified target levels for estrogen that 
would provide symptomatic pain relief with minimal impact on 
BMD. A systems pharmacology model of the female menstrual 
cycle14 indicated that targeting the GnRH pathway to achieve 
the desired range of serum estrogen levels would be difficult to 
achieve; therefore, the research program was halted before any 
compound entered the clinic.

 Application of systems pharmacology modeling to the devel-
opment of fatty acid amide hydrolase inhibitors for pain
The endogenous cannabinoid (endocannabinoid) N-
arachidonoyl ethanolamine (anandamide, AEA) activates the 
G-protein-coupled receptors CB1 and CB2, which are believed 
to play a role in nociceptive signaling. CB1 and CB2 receptors 
are the primary target of the main psychoactive substance, 
Δ9-tetrahydrocannabinol, in marijuana, but the potential anal-
gesic clinical benefits of Δ9-tetrahydrocannabinol have been dif-
ficult to demonstrate due to its well-known psychoactive actions 
and other side effects.15 Fatty acid amide hydrolase (FAAH) is 
an integral membrane enzyme that is involved in degradation 
of AEA and related fatty acid amides, including linoleoyl etha-
nolamide, N-palmitoylethanol amine, oleoylethanolamide, and 
stearoylethanolamide. It has therefore been postulated that inhi-
bition of FAAH could provide a novel pharmacological strategy 
to enhance the “endocannabinoid tone,” and preclinical stud-
ies have provided support for the hypothesis that inhibition of 
FAAH can be associated with analgesic effects in certain rodent 
models.16 Therefore, several groups have been pursuing the 
development of selective FAAH inhibitors for the treatment of 
a variety of indications, including pain.17 We identified a potent, 
irreversible and selective FAAH inhibitor, PF-04457845.18 This 
compound demonstrated good central nervous system penetra-
tion19 and efficacy in preclinical models of inflammatory and 
noninflammatory pain,20 although the effects were not seen 
consistently across a wide range of models.16 PF-04457845 was 
well tolerated in first-in-human studies and displayed good PK 
properties, supporting further clinical development.21 Ex vivo 
analysis in isolated leukocytes demonstrated that PF-04457845 
produced near-maximal inhibition of FAAH activity in healthy 
subjects following oral dosing and, of note, mean fatty acid 
amide concentrations (including AEA) were increased 3.5- to 
10-fold following PF-04457845,21 demonstrating target engage-
ment and modulation according to the “three pillars” princi-
ples22 (exposure at the target site of action, binding to target, 
and expression of pharmacology).

During this stage of preclinical-to-clinical transition and early 
clinical research, it was decided to develop an integrated systems 
pharmacology model of the FAAH/CB1 pathway as a quantita-
tive framework for interpretation of the emerging biomarker 
data. The systems pharmacology approach integrated PK–PD, 
physiologically based PK, and systems biology.23 The model 
integrated literature and in-house data on the metabolism of 
AEA, palmitoylethanol amine, oleoylethanolamide, and linole-
oyl ethanolamide; the kinetics of the enzymes controlling endo-
cannabinoid substrate production and degradation; and CB1 
receptor binding kinetics. Overall, the model comprised four 

compartments (brain, blood–brain barrier, plasma, and rest of 
the body), 77 reactions, and 146 parameters (see Supplementary 
Figure S1 online). The key outcome of this effort was that it 
was not possible to replicate the biomarker profile obtained in 
the healthy volunteer study21 when it was assumed that AEA 
was metabolized only by FAAH. The experimental clinical data 
showed that AEA levels increased to a plateau following admin-
istration of PF-04457845 and that increasing doses affected the 
width, but not the height of the plateau (Figure 4a). Such profiles 
could be replicated by the model only when it was assumed 
that there was another, FAAH-independent, route of metabo-
lism involved in AEA breakdown (Figure 4b). Of the numer-
ous candidates (including cyclooxygenases and cytochromes 
P450), further model simulations led to the hypothesis that this 
additional clearance process was most likely due, at least in part, 
to the enzyme N-acylethanolamine hydrolyzing acid amidase. 
Validation of this hypothesis requires further work.

A further conclusion derived from the systems pharmacol-
ogy model was that as a result of the presence of the additional 
metabolism process, the maximum increases in AEA levels in 
the central nervous system were predicted to be relatively small 
and saturable within the range of PF-04457845 doses tested. 
AEA occupancy at the CB1 receptor was predicted to increase 
from 3% in the absence of treatment to a maximum of only 
~25% in the presence of PF-04457845 (Figure 4c), unless it 
was assumed that AEA levels at the site of action were to be 
enhanced as a result of partitioning in lipids surrounding the 
CB1 receptor. These predictions triggered discussions that high-
lighted the significant gap in the project team’s understanding 
of the quantitative relationship among AEA levels, expression 
of CB1 pharmacology, modulation of nociceptive signaling, 
and analgesic efficacy. PF-04457845 was subsequently tested 
for analgesic effects in patients with osteoarthritis but was, in 
contrast to naproxen, not differentiated from placebo.24 Various 
possible explanations were provided for this lack of clinical effi-
cacy and the apparent disconnect with promising preclinical 
data.15,24 However, the systems pharmacology model provided 
a novel argument that inhibition of FAAH alone may lack the 
intrinsic “horsepower” to sufficiently modulate the endocan-
nabinoid system and that combined inhibition of multiple 
AEA-metabolizing enzymes (including N-acylethanolamine 
hydrolyzing acid amidase) may be required to achieve analgesic 
efficacy. The quantitative systems pharmacology approach also 
highlighted the fact that robust methods to quantify AEA CB1 
receptor occupancy and activation in a clinical setting need to be 
developed first to enable a more rational development of novel 
drugs in this field.

Overall, this case study illustrates the potential value of 
prospective, integrated systems pharmacology modeling and 
simulation for the selection and validation of drug targets. This 
conclusion is supported by results emerging from similar sys-
tems pharmacology approaches in pain research (e.g., focusing 
on other key pathways involved in the regulation of pain, such 
as nerve growth factor),23,25 as well as other areas such as central 
nervous system diseases,26 oncology,27 osteoporosis,13 endome-
triosis,10 and safety.28
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Systems pharmacology modeling to accelerate drug 
development and inform decision making for a sodium/
glucose cotransporter 2 inhibitor in type 2 diabetes
Sodium/glucose cotransporter 2 (SGLT2) inhibitors are a class of 
glucose-lowering agents that provide a rational approach for the 
treatment of type 2 diabetes mellitus (T2DM);29 SGLT2 is one of 
the more competitive therapeutic targets, with several inhibitors 

currently in development.30,31 SGLT2 plays a major role in the 
reabsorption of glucose by the kidney,32 and SGLT2 inhibition 
results in increased urinary glucose excretion (UGE) in both 
healthy subjects and subjects with T2DM,33–36 leading to reduc-
tions in plasma glucose and glycosylated hemoglobin (HbA1c) lev-
els with the additional benefit of a negative caloric balance, thereby 
combining glucose control with weight loss.37,38 UGE provides the 
opportunity of a mechanistic biomarker for clinical assessment.

During the discovery and development of the SGLT2 inhibitor 
PF-04971729 (ertugliflozin), we continuously developed, used, 
and refined modeling and simulation tools to increase speed and 
enhance decision making in the program. These tools included 
biologically based PK–PD models in the nonclinical phase of the 
program,39 model-based meta-analyses to assess comparative 
efficacy within40 the class as well as against other antidiabetic 
agents,41 and systems pharmacology models42 to increase the 
confidence in the dose selection and trial outcome. This example 
will expand on use of the systems pharmacology model.

To inform the clinical development plan for ertugliflozin, we 
integrated the available data on the molecule, the physiologic 
understanding of the mechanism of action, and the published 
data on other SGLT2-targeting compounds in a comprehensive 
model. This allowed us to establish a link between the mecha-
nistic biomarker UGE in healthy subjects and improvements 
in glycemic control, as measured by HbA1c, and body weight 
in longer-term studies in T2DM subjects. To facilitate this, we 
modeled SGLT2 inhibition using the Metabolism PhysioLab 
platform43 (Entelos, Foster City, CA).

The Metabolism PhysioLab platform is a mathematical model 
of human T2DM pathophysiology consisting of several hundred 
ordinary differential and algebraic equations. The model is based 
on an extensive survey of published literature and represents the 
major physiological systems involved in the regulation of nutri-
ent intake, utilization, storage, and disposal in health and disease. 
T2DM virtual patients are created by parametrically changing 
the underlying disease pathophysiology (e.g., insulin and glucose 
effects on metabolic pathways) to reflect the phenotypic diversity 
observed in T2DM clinical trials. The model has been validated by 
comparing virtual patient responses to published and proprietary 
data from a variety of clinical studies and trials, including oral glu-
cose tolerance tests, clamp procedures, mixed-nutrient meal tests, 
nutrient and hormone infusions, and therapeutic interventions.43

A physiologically based representation of competitive SGLT2 
inhibition was added to the model to account for the effect on glu-
cose reabsorption in the proximal tubule. The model was updated 
using publicly disclosed information on the PK and UGE profile 
for experimental SGLT2 inhibitors in both healthy and T2DM 
subjects33,34 from single- and multiple-dose studies with differ-
ent meal protocols, and was validated by comparing predictions 
of efficacy against a published 12-week trial.37 Phase I and phase 
II clinical trials were simulated (single- and multiple-ascending-
dose trials in healthy and T2DM subjects, 12-week chronic dosing 
in T2DM subjects) and the results were compared with reported 
data for UGE, HbA1c, and body weight to calibrate the model. 
An Emax model was implemented to describe the renal glucose 
reabsorption rate in the presence of an SGLT2 inhibitor, and the 

Figure 4  Observed data and systems pharmacology model predictions for 
the effects on anandamide (AEA) of the selective fatty acid amide hydrolase 
(FAAH) inhibitor, PF-04457845. (a) Elevation of AEA observed in a typical healthy 
volunteer subject following a single oral dose of PF-04457845 (0–40 mg). (b) 
Systems pharmacology model predictions of the effect on AEA levels following 
a single dose of 10 mg PF-04457845 assuming the absence (dotted line) or 
presence (solid line) of a FAAH-independent clearance process. The open circles 
show the mean experimental data from the healthy volunteer study (ref. 26). (c) 
Systems pharmacology model–predicted elevations of central nervous system 
CB1 receptor occupancy following a single dose of PF-04457845 (0.1–40 mg).
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model parameters were calibrated to match the 24-h UGE data 
from single- and multiple-dose trials with other SGLT2 inhibitors. 
For 12-week phase II simulations, hypotheses related to disease 
progression and food intake were evaluated for consistency with 
published clinical HbA1c and body weight data. An increase in 
food intake in the presence of an SGLT2 inhibitor was required 
to match the weight loss reported in the 12-week clinical trial, 
representing a partial compensation for the negative energy bal-
ance resulting from the glycosuria.

Once representation of the comparator SGLT2 inhibitor was 
qualified, a simultaneous representation of SGLT2 inhibition with 
ertugliflozin was implemented in the platform. Food intake was 
implemented per clinical protocol. Modeled PK was introduced, 
and drug potency for ertugliflozin was adjusted in real time during 
the first-in-human study as PK and biomarker data with ertugli-
flozin became available to match UGE (Figure 5a). The resultant 
model was used to simulate the HbA1c dose–response relation-
ship after 12 weeks of treatment with ertugliflozin to support dose 
selection for the phase II trial and the model-simulated response 
were subsequently corroborated by comparison to the observed 
clinical trial data (Figure 5b).

The modeling approach undertaken to support dose selection 
for the phase II study provided a quantitative link between UGE, 
the biomarker for the mechanism of action, and the long-term 
end points (HbA1c and body weight). Furthermore, this allowed 
successful prediction of changes in other circulating hormones 
(e.g., insulin levels) as well as providing grounds for simulating 
different dosing regimens and combination therapies. This infor-
mation was used to successfully predict efficacy in T2DM patients 
from the observed first-in-human UGE data and to effectively 
project the phase II dose range with results from a single-dose 
escalation study in healthy subjects. This approach was one of the 
key drivers that allowed completion of the phase I and II clinical 
explorations in a shorter than expected time frame (14.6 months).

Adaptive dose-finding phase IIb study designed using clinical 
trial simulations
A challenge for dose-finding trials of an anticoagulant is mini-
mization of the serious risks of underdosing (thrombosis) 
and overdosing (major bleeding, MB) while exploring a wide 
enough dose range of the study drug to select an optimal phase 
III dose. PD 0348292 is an oral factor Xa inhibitor that was 
under investigation for prevention of venous thromboembo-
lism (VTE) following total hip and knee replacement surgery. 
A modeling and simulation approach was undertaken to design 
a phase II dose-finding trial in total knee replacement surgery 
that would minimize the risk to patients of excessive VTE or 
MB but have a high probability of identifying a single phase III 
dose that would be expected to provide the appropriate balance 
between efficacy and safety. The objectives of the phase II study 
were therefore to (i) estimate the dose of PD 0348292 that is 
equivalent to the standard-of-care comparator, enoxaparin, for 
prevention of VTE in total knee replacement and (ii) character-
ize the dose–response relationship of PD 0348292 for VTE and 
MB. Exposure–response modeling and clinical trial simulations 
were used to leverage prior knowledge and evaluate the ability 
of alternative study designs to meet these objectives.

A PK–PD model was developed to link response in an in vitro 
PD assay (inhibition of thrombin generation) to clinical out-
comes for comparator anticoagulant compounds, and the model 
was used to predict the VTE and MB dose–response relation-
ships (and associated uncertainty) for PD 0348292, based on its 
response in the in vitro assay.44 A database of study-level VTE 
and MB outcomes in hip and knee replacement surgery from 
the literature was used to characterize incidence of VTE and 
MB as a function of dose for 21 anticoagulant compounds via 
a logistic regression model that specified the same shape of the 
dose–response relationship but different potencies across com-
pounds.45 Data for 10 comparator compounds and PD 0348292 

Figure 5  Systems pharmacology model prediction of the effect of ertugliflozin on (a) cumulative amount of urinary glucose excretion (UGE) in healthy subjects 
(red symbols, superimposed on observed data, represented by the box plots) and (b) prediction of the 12-week HbA1c results in type 2 diabetic subjects (shaded 
blue area is the 90% confidence interval (CI) of prediction, superimposed on observed data, red symbols, with observed 80% CI).
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were generated in the PD assay, and clinical trial outcomes were 
available for 5 of these compounds.44

The VTE and MB dose–response relationships for PD 0348292 
predicted by the models were quite uncertain (Figure 6) because 
there was no consistent relationship linking the inhibition of 
thrombin generation to clinical outcome across the compounds. 
The PD 0348292 dose equivalent to enoxaparin was estimated to 
be 1.1 mg (90% confidence interval: 0.076–16) for VTE and 1.5 mg 
(0.23–11) for MB. The models were used to simulate the outcome 
of each potential trial design 1,000 times.44 Acceptable trial per-
formance required that a single PD 0348292 dose be identified 
with both VTE and MB rates similar (ratio ≤ 1.3) to the compara-
tor with a probability (power) ≥80% if there truly were a dose 
that satisfied those criteria. Factors that were considered in the 
evaluation of different study designs included sample size, analy-
sis method (model-based dose–response analysis vs. pair-wise 
comparisons), inclusion of active control, randomization ratio 
between treatment arms, and adaptive dose modifications. For the 
adaptive designs, simulations were also used to evaluate various 
criteria for pruning and adding doses to ensure that (i) the overall 
power of the trial was maintained, (ii) the overall incidences of 
VTE and MB for PD 0348292 in the trial were similar to those for 
enoxaparin, and (iii) there was <5% cumulative chance that the 
dose equivalent to enoxaparin was pruned and ~70% cumulative 
chance that a nonequivalent dose was pruned.44

As a result of the clinical trial simulations, a randomized, 
active-controlled, parallel-group, adaptive dose-ranging 
study was conducted.46 With the proposed study design, a 
fixed total sample size of 1,225 randomized subjects was esti-
mated to provide at least 92% power that the selected dose of 
PD 0348292 would have true VTE and MB incidences within 
a factor of 1.3 of enoxaparin. A total of seven oral doses of 
PD 0348292 were studied (0.1–10 mg). The initial cohort of 
subjects was randomized to one of the lowest five doses of 
PD 0348292 or enoxaparin, in a 1:1:1:1:1:2 ratio. Over the 
course of the study, the data monitoring committee authorized 

discontinuation of the three lowest dose groups and addi-
tion of two higher dose groups on the basis of prespecified, 
periodic, model-based dose–response analyses of all available 
VTE and MB data.

A total of 1,411 subjects were randomized to treatment. The 
protocol was amended at the discretion of the data monitor-
ing committee to increase the sample size by ~200 to allow 
for adequate sample size in the highest dose group because 
interim analyses were delayed slightly from the original plan. A 
statistically significant dose–response relationship (P < 0.0001) 
for incidence of VTE was observed. The relative risk for VTE 
was estimated with good precision (Figure 6a). On the basis of 
this dose–response model for efficacy, the dose of PD 0348292 
equivalent to enoxaparin was estimated to be 1.16 mg q.d. (95% 
confidence interval: 0.56 mg–2.41 mg). The number of MB 
events was very low, and the dose–response relationship for 
MB was not statistically significant for PD 0348292 (P = 0.6, 
Figure 6b).

This study successfully used an adaptive design and a dose–
response model-based analysis to safely assess PD 0348292 across 
a 100-fold dose range, whereas previous phase II studies of factor 
Xa inhibitors had evaluated a 4- to 12-fold dose range that was 
inadequate to discern a dose–response relationship for efficacy 
and/or resulted in doses being dropped for unacceptable bleed-
ing.47–50 On the basis of multiple prespecified dose decision analy-
ses of the incidence of VTE and MB, doses associated with an 
unacceptable incidence of VTE were dropped early, ensuring min-
imum exposure of subjects to undesirable doses. Furthermore, 
doses considered to be safe based on predicted incidence of MB 
were added to the study, thereby allowing for safe exploration of 
the upper end of the dose range of PD 0348292. Characterization 
of the dose–response relationships for VTE and MB in this adap-
tive design study provided a robust scientific basis for phase 
III dose selection with ~2.5-fold fewer subjects than would be 
required in a conventional, parallel-arm, pairwise comparison 
study designed to achieve the same precision.

Figure 6  Observed relative risk of PD 0348292 vs. enoxaparin (symbols with 95% confidence intervals (CIs)) for (a) VTE and (b) MB and logistic regression model 
fit (solid line with dark blue area covering the 90% CI) in an adaptive phase II study. The light blue area covers the 90% CI before the trial based on the PK–PD 
model for inhibition of thrombin generation. MB, major bleeding; PK–PD, pharmacokinetics–pharmacodynamics; VTE, venous thromboembolism.
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Application of MBDD in late clinical development: tofacitinib 
for rheumatoid arthritis
This example illustrates the prospective application of MBDD con-
cepts to the late-stage development of tofacitinib, a novel, oral, 
small-molecule inhibitor of the Janus kinase (JAK) pathways, for 
the treatment of rheumatoid arthritis. Results from a POC trial 
demonstrated a high degree of efficacy but with side effects at all 
tested doses. The goal was to identify dose(s) for pivotal registra-
tion trials that would achieve a minimally acceptable product pro-
file of similar efficacy as biologic injectables, with acceptable safety.

Tofacitinib is a JAK inhibitor. JAK enzymes transmit the 
signaling of several proinflammatory cytokines involved in the 
pathogenesis of rheumatoid arthritis through pairings of JAKs 
(e.g., JAK1/JAK3, JAK1/JAK2), and tofacitinib works by inhibit-
ing the activities of these combinations, resulting in modulation 
of cellular processes of hematopoiesis and immune cell function.

The first evidence of efficacy in patients with rheumatoid 
arthritis was observed in a 6-week POC study of 5, 15, and 30 mg 
b.i.d. doses of tofacitinib and placebo.51 All doses demonstrated 
efficacy as measured by the American College of Rheumatology 
(ACR) response criteria but were also associated with side effects 
such as dose-dependent changes in laboratory markers (e.g., 
decreased neutrophils). The challenge was to efficiently yet com-
prehensively characterize dose–response relationships to iden-
tify optimal dose(s) for confirmatory trials. This process began 
by gaining agreement with stakeholders on the key questions 
and setting quantitative and action-oriented objectives for the 
phase IIb program, as illustrated below.3

1.	 What do we need to know? Identify the lowest dose with 
at least 30% difference in ACR 20 response vs. placebo by 
week 12.

2.	 How sure do we want to be? We desire 80% probability 
that the true response for the model-estimated dose will be 
within ±20% of the target efficacy magnitude, i.e., 24–36%.

3.	 What are we willing to assume? A pharmacologically based, 
longitudinal Emax model will be applied; the dose range 
derived from the monotherapy POC study data will be appli-
cable to combination treatment with methotrexate; prior dis-
tributions of parameters for the model-based analysis will be 
weakly informed by the POC study data.

Various longitudinal, dose–response models were developed, 
including an indirect latent variable response model, relating 
pharmacologically based models to categorical data.52 The vari-
ous models gave similar predictions of the data but showed dif-
ferences when extrapolating to lower doses and later time points. 
Consequently, they were used as “data-generation” models to 
ensure that the design chosen had robust operating character-
istics over a range of “true” relationships.53 A similar approach 
was implemented to characterize decreases in absolute neutro-
phil counts. Because the neutropenia incidence data from the 
POC study were too sparse, modeling efforts were focused on 
characterizing neutrophil counts using indirect response and 
semimechanistic models54 to provide a more stable basis for 
dose and time interpolation/extrapolation. Using clinical trial 

simulations, it was determined that the 10th percentile of the 
neutrophil count distribution was related to the risk of neutro-
penia and estimated with greater precision than the neutropenia 
incidence data, thereby providing an efficient way to eliminate 
doses with unacceptable neutropenia event rates predicted based 
on changes in continuous data.

Two 6-month, phase IIb studies were performed in which 
tofacitinib was administered either as monotherapy55 or in com-
bination with methotrexate.56 Both studies evaluated placebo 
and tofacitinib doses of 1, 3, 5, 10, and 15 mg b.i.d. The sample 
sizes of these studies, totaling >800 patients, were larger than 
traditional phase II sample sizes because they were designed 
to support quantitative decision criteria aimed at identifying 
an optimal dose rather than statistical separation from placebo. 
Traditional pairwise comparisons between active doses would 
have necessitated a 70% increase in study size to achieve similar 
performance characteristics over the model-based approach.

Model-derived inferences, updated using Bayesian methods, 
were used to calculate the probability of technical success, i.e., 
the probability of achieving efficacy similar to that of standard of 
care.57,58 As predicted from the POC study, changes in neutrophils 
and predicted incidence of neutropenia were within acceptable 
limits and therefore not considered to limit the dose range under 
consideration for phase III trials. However,  dose-dependent 
changes in hemoglobin levels were noted. An empirical, longi-
tudinal model was applied to capture the relationship between 
dose and hemoglobin levels. The probability that the incidence 
of clinically important anemia (defined as >2 g/dl decrease from 
baseline in hemoglobin or absolute value <8 g/dl) will not exceed 
5% above placebo over 6 months of treatment was calculated.

As shown in Figure 7, modeling based on the methotrexate 
combination study predicted that doses from 5 through 10 mg 
b.i.d. inclusive would meet both the desired efficacy and safety 
criteria of having ~50% or greater probability of achieving effi-
cacy similar to standard of care, with anemia rates <5% above 
placebo. By contrast, a 3 mg dose had a 10% chance of achiev-
ing the ACR 70 target as compared with a 40% chance for the 
5 mg dose. The choice of 5 and 10 mg doses was independently 

Figure 7  Tofacitinib—probability of achieving targeted differences vs. 
placebo. Solid symbols and lines represent model-based probability 
estimates for ACR responses and anemia. ACR, American College of 
Rheumatology; BID, twice daily; Pbo, placebo.
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verified in the monotherapy phase IIb study. Doses ≥5 mg pro-
vided the requisite level of efficacy, whereas a 3 mg dose was 
considered clinically suboptimal, even though it separated from 
placebo.55 Thus, the totality of the data justified the choice of 5 
and 10 mg b.i.d. doses for phase III studies.

The results from the phase III program were consistent with 
these model predictions. The efficacy of 5 mg b.i.d. was as pre-
dicted (29% difference in ACR 20 rate vs. placebo across five 
phase III studies) and, more important, similar to that of stand-
ard of care (adalimumab).59 The rates of anemia and neutro-
penia were low and considered manageable with appropriate 
clinical monitoring.

A prospective approach to (i) designing studies to stringent 
quantitative criteria, (ii) characterizing exposure–response 
relationships using well-established clinical outcome data in 
patient populations representative of the phase III program, and 
(iii) selecting doses based on efficacy and safety using probability 
of technical success as a common metric allowed demonstration 
of a positive benefit:risk profile with the desired product attrib-
utes. Tofacitinib of 5 mg b.i.d. was approved in 2012 by the US 
Food and Drug Administration for the treatment of moderately 
to severely active rheumatoid arthritis.

DISCUSSION
In Figure 1, we illustrated the five highly interdependent ration-
ales (for selected pathway, target, molecule, dose regimen, and 
patients) that in combination derive an overall likelihood that 
a compound will become a commercially viable product. We 
believe that specific elements of MBDD can be applied in order 
to (i) determine a (numerical) level of confidence in each spe-
cific foundational rationale and (ii) potentially increase their 
magnitude. Historically, the clinical pharmacology and phar-
macometrics community has exerted most influence through 
applying MBDD in the domain of benefit/risk, and indeed all 
the examples of our 2007 article addressed benefit/risk in one 
form or another. This will continue to be a core area for our 
community to influence because we have acquired experience 
and expertise and we have an evidence base of favorable impacts. 
In this article, example 5 follows a similar vein in that it rein-
forces the point that quantifying the probability of achieving 
the required product profile is a critical component of robust 
phase III strategy, study designs, and decision making. To this 
effect, we have emphasized the importance of comprehensive 
knowledge management strategies and have demonstrated 
that it is possible to reverse the trend of increasing phase III 
(and IV) study failure. Example 4 also addresses benefit/risk, 
although by different means. In this example the actual study 
design adopted was used as a “risk-mitigation strategy” due 
to its adaptive nature (because the accumulated evidence base 
gathered before designing the trial highlighted the high level 
of uncertainty in determining a favorable clinical dose range).

We have been unable to demonstrate an increase in phase II 
study success. To address this situation, we need to consider what 
factors are most impactful for phase II attrition, which, of course, 
may be different from the factors impacting phase III. By the time 
a compound is administered to humans, the benefit/risk attributes 

are largely predetermined (and therefore amenable to prediction) 
because we have already consciously selected both the particu-
lar target and compound to study. The role clinical development 
serves is to “simply” uncover the compounds’ inherent benefit/
risk properties (be they favorable or not) sooner or later within the 
clinic. Consequently, what would greatly increase the robustness 
of any prediction would be the depth of our understanding of the 
properties of the specific human target and how well preclini-
cal compound-related attributes can inform the resultant human 
compound-related attributes. In the latter case (preclinical to clin-
ical translation), the clinical pharmacology and pharmacometrics 
community, together with other groups, has acquired both expe-
rience and expertise, and we can again demonstrate an evidence 
base of favorable impacts. In the former case, this is an emerging 
area for our community because we see this as an important evo-
lution of MBDD. We believe that if specific quantitative human 
target/system properties were to be more routinely integrated into 
our models, then our ability to predict human responses from 
data gathered in the preclinical space would be greatly enhanced. 
This is the rationale behind incorporating human systems biol-
ogy and pharmacology domains into Figure 1 because results in 
animal models of disease are often not predictive of efficacy in 
humans.60 A more complete and comprehensive understanding 
of human biology and pathophysiology can be achieved via more 
mechanistic or system models.61 By initiating such models early in 
the discovery stage, they can be propagated and updated through 
the continuous accumulation of experimental data, across sys-
tems, throughout discovery and development, thereby increasing 
confidence in the selected target.

The first three examples in this article illustrate the role that 
systems pharmacology models can now play. In example 1, we 
were able to determine the (non)viability of the target of interest 
without the need for any additional human studies. Example 2 
also demonstrated the (non)viability of the target of interest, veri-
fied by a small amount of clinical data. What both these examples 
share is that they underwrote no go decisions for which we were 
able to be confident that we had thoroughly tested each target. 
Indeed, a methodical examination of the systems model described 
in example 2 afforded some insights on alternative targets/path-
ways that may be worthy of further investigations. The impact 
of example 3 was quite different. In this case, we were able to use 
our integrated models that captured pathology, physiology, and 
the competitive landscape to progress the compound to phase II 
extremely quickly (go with confidence).

In Figure 1, the first and last domains (pathway and effective-
ness/reimbursement), although at different ends of the “spec-
trum,” have a common attribute in that the volume of available 
data from each domain poses significant challenges for the types 
of methodological and analytical approaches commonly adopted 
by the clinical pharmacology and pharmacometrics community. 
In this respect the term “data-driven models” should not be 
regarded as a weakness in these data inferential capacities because 
the specific data types, such as cellular and subcellular functional 
responses, -omics, epidemiology, real-world data, and patient-
reported outcomes, are abundant and valuable sources of relevant 
information. Both the systems biology and pharmacoeconomic 
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communities have adopted novel and interesting approaches to 
address their “data problems,” and when the publications ema-
nating from these two communities are examined, we (clinical 
pharmacology and pharmacometrics) can often see opportunities 
for complementary and mutually beneficial collaborations.61,62 
We strongly support collaborations between these different disci-
plines because they represent the next frontier for MBDD and an 
important opportunity to impact drug discovery, development, 
registration, and access to new medicines. Certainly, the pharma-
coeconomic community regularly does something that clinical 
pharmacology and pharmacometrics do not, in that they publish 
sophisticated, integrated, relevant, and impactful data analyses 
in the journals of prescribers and payers.63,64 Within the effec-
tiveness and reimbursement arena, we consider these examples 
to characterize the current “best practice” application of MBDD. 
Because they emanate from the pharmacoeconomic community, 
this should serve to further emphasize our opportunity for impor-
tant future collaboration.

The focus of this article was to highlight the nature of change 
within a pharmaceutical research and development organization 
in order to increase MBDD utilization. External influences can, 
and do, affect the rate of these internal changes. How worldwide 
regulatory agencies position themselves in terms of “supporting” 
MBDD can be important, and it is encouraging to witness recent 
developments within the European Medicines Agency65 com-
plementing those of the US Food and Drug Administration.66

Looking forward, all the aforementioned quantitative groups, 
including our own, are likely to face similar challenges in that it 
will not be the lack of opportunities, or suitable data, that will be 
our challenge but rather the lack of computational methods or 
modeling techniques or structures that can appropriately accom-
modate the wealth of available relevant data. Overemphasis on 
techniques and approaches to collect even more data, without a 
matching increase in our capacity and ability to connect the data 
(after A.F. Cohen, Leiden, The Netherlands) in an appropriate 
manner, will undoubtedly lead to missed opportunities. However, 
the continued evolution of MBDD in order to enable and enhance 
its relevance in this dynamic landscape will mean that MBDD 
will continue to offer a rational approach to efficiently accelerate 
drug development.

SUPPLEMENTARY MATERIAL is linked to the online version of 
the paper at http://www.nature.com/cpt
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